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LETTER TO THE EDITORS 

ON THE FLAT PLATE APPROXIMATION TO LAiMINAR FREE CONVECTION 

FROM THE OUTER FACE OF A VERTICAL CYLINDER 

(Received 10 April 1973 and in revisedform 17 July 1973) 

SINCE the appearance of the classical study by Sparrow and 
Gregg [l], laminar free convection from the outer surface 
of a vertical cylinder has been treated by a number of 
investigators. One cornerstone of pertinent analysis is the 
determination of the suitability of flat plate theory in a given 
configuration to estimate heat (or mass) transfer rates at the 
cylindrical surface. Sparrow and Gregg confined their 
approach to Pr = 0.72 and 1.0; the 5 per cent criterion (i.e. 
the criterion which ensures that flat plate analysis is not less 
accurate than 95 per cent) was given as [2] 

Diameter of cylinder, D 35 

Length of cylinder, L 
> s; Pr = 0.72, 1.0. (1) 

Elenbaas [3, 41 and LeFevre and Ede [5] derived more 
complicated relationships; the latter agree quite closely 
with the Sparrow-Gregg model for low Prandtl numbers, 
provided that (O/L) Ruj is larger than 30. 

The instance where Pr is rather large is especially 
important in estimating heat and mass transfer rates in 
electrolysis of aqueous electrolytes at vertical cylinders. 
Eigenson’s pioneering work [6] suggests that if Gr, > 106, 
flat plate theory can be applied with great precision, regard- 
less of the value of Pr. iMore recent work by Fujii et al. 
[7,8] indicates that the larger the Prandtl number, the better 
the flat plate approximation; however, their analysis does 
not exceed Pr = 100. On the other hand, the theory of free 
convection from axisymmetric surfaces by Acrivos [9] 
states that at infinitely large Prandtl numbers the flat plate 
analysis is completely accurate for a vertical cylinder of any 
geometry (i.e. D/L ratio). 

The purpose of this letter is to present a generalized form 
of the criterion given by equation (i), which can be applied 
to any Prandtl number between unity and infinity. The 
generalized relationship was developed by following the 
approach of Sparrow and Gregg [l] and Fujii [S] ; in so 
doing, the third set of ordinary differential equations, whose 
contribution has been found negligible, was removed. The 
remaining two sets, which constitute a four-point boundary 
value problem where solved numerically by applying a 
simple optimum-search technique to arrive at the initial 
conditions. Table 1 shows the dependence of the approxi- 
mation-to-flat-plate criterion 

D 36Yf g;(O) 3% > --.-Gr-t;R & _?! 
E R - 1 B;(O) Nar, 

(2) 

on the magnitude of the Prandtl number. The Table also 
shows the previous results by Fujii and Sparrow and Gregg; 
notice the slight disagreement at low Pr. The dependence of 
D/L on Pr can be expressed by the least-squares relationship 

D 1.66115 

L 
> R-l pr-0’2864 Gr-f (3) 

with a residual sum of squares of 0.00106 (for Pr = 1, the 
second entry in Table 1 was used). Equation (3) permits the 
estimation of the accuracy of flat plate theory at any Pr 2 1 
and Gr in the case of a vertical cylinder. 

Table 1. The dependence of the approximation criterion on 
Pr 

Pr e;(O) s;(O) 3(2)f !!!!!! Remarks 
o;(o) 

1 1.7500 From [l] 
1 -0.5671 - 0.2236 1.6730 From [S] 

100 -2.1910 - 0.2254 0.4364 From [8] 
1000 - 4.2740 - 0.2280 0.2263 
1500 - 4.7370 - 0.2290 0.2051 
2000 - 5.0710 - 0.2300 0.1925 

The exponent of the Prandtl number in equation (3) is 
very close to the intuitively expected value of 0.25. The 
numerical accuracy of the solution of the problem depends 
on how closely the boundary conditions are satisfied. This 
information is not available in [l] and [S]; in the current 
work, the accepted solutions satisfy the “near-zero” con- 
ditions: fb<O~OOl; f; < 0+301; B0 C 0.0001 at the final 
value of q, estimated from the Levich equation [lo] 
n = 1.438/Pr*. This relationship is correct only for a 
flat plate, but if R is slightly larger than unity, the hereby 
computed value of r7r is acceptable instead of the numerically 
indeterminate condition of r7 + 00. Furthermore, the value 
of the exponent is 0.233, if computed using the last three 
entries in Table 1. Thus, the exact form of equation (8) is 
most likely 

D 

L 
> const. Ra-* ; R fixed (4) 

but from a practical point of view, pursuance of an exact 
numerical solution is not particularly important. 
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